johnsmachines

machines which I have made, am making, or intend to make, and some other stuff. If you find this site interesting, please leave a comment. I read every comment and respond to most. n.b. There is a list of my first 800 posts in my post of 17 June 2021, titled "800 Posts"

Tag: boiler

6″ Vertical Boiler- the Firehole

The firehole is the opening where coal is shovelled into the firebox.  It is oval shaped, and is exposed to the boiler pressure.  It is made from thick copper tube.  Oval holes must be formed through the boiler wrapper and the firebox wrapper.

IMG_6521 2

The elliptical hole in the boiler wrapper, and the firehole tube.

The first task is to shape copper tube which is circular, into oval shaped tube.  I decided to make an oval shaped split wooden form and to compress the annealed copper tube with the form.

IMG_6510.JPG

The wooden slab is cut into 2 pieces which are then cramped together, and the oval hole is CNC machined.  

IMG_6512.JPG

A 1″ 25mm length of 3.2mm thick walled tube is cut off, then annealed.  Note that I have upgraded my forge.  I bought some aerated concrete blocks (Hebel), and enlarged and encased the forge.  The white Hebel blocks reflect the heat and the forge temperature rises quickly.   the outside of the forge remains quite cool, testimony to Hebel’s insulating properties.  Hebel is quite inexpensive.  A 600 x 200 x 100mm blocks costs $AUD4.60.  Heating time is 60 seconds, vs 90 seconds with the previous setup.

IMG_6514.JPG

The wooden form and the unshaped thick walled copper tube.

IMG_6517.JPG

After squeezing the annealed coper pipe in the form, using a 6″ vice.  Nice elliptical shape.  Note the pencil witness mark.

IMG_6519.JPG

Then the elliptical hole is cut into the boiler wrapper.  The vice jaws were replaced by temporary aluminium jaws 4″ high, adequate to hold the 6″ diameter tube.  Cutting the elliptical hole on the CNC mill.  There are wooden plugs in the boiler tube to prevent the boiler tube from distorting

IMG_6521 2.JPG

The finished boiler hole and the elliptical insert.  This was tense machining. 

IMG_6520 2.JPG

The fit is a bit too tight.  I will take off another 0.1mm so it is an easy sliding fit, suitable for silver soldering.    Then to cut the same elliptical hole in the firebox wrapper, but while the main cylinder is set up in this position I can cut openings for the ashpan and safety valve bush.                                                                                                                              

BOILER FOR MODEL STEAM ENGINES

Now that the model triple expansion engine is working on steam, I feel able to put it aside, again, and move onto the next project.  The triple is not quite finished.  It needs cylinder lagging, control rods for the cylinder drain cocks, drain tubes for the cylinder drains, and an extra pump for the condenser cooling, and some paint, possibly.

It also needs a boiler.  I would like to exhibit the triple at club demonstrations and public exhibitions, but for that I need a boiler which is certified by our boiler safety authority.  So I intend to make a boiler to AMBSC code, and big enough for the triple or any other engines which I might make in the foreseeable future.

This is what I have in mind….

boiler assembly

This is a copper boiler with a 152mm (6″) diameter barrel, a superheater, gas or coal fueled, and firetubes (most not shown).  The plans call for a 5″ barrel, but I have been unable to find any suitable copper tube, and I have some 6″, so that is what will be used.  I am currently drawing up the plans.

The certification process here in Australia requires the following steps:

  1. Preliminary discussion with the boiler inspector (done)
  2. Submission of 2 sets of plans to the boiler inspector.  If acceptable, one set is signed off and stamped and returned.  The other set is held by the inspector.
  3. Inspection of the prepared components by the inspector prior to soldering/brazing/welding.
  4. Inspection of the firebox and tube assembly after soldering/brazing/welding.
  5. Inspection of the barrel and outer wrapper after soldering/brazing/welding.
  6. Testing the boiler after completion.  This involves a hydrostatic test, at double working pressure for 20 minutes, then a steam test at 10% above working pressure.

If it passes, the boiler is certified for 12 months, after which it must be retested.  If it passes the retest it is certified for 3 years.

The certification process is performed by volunteer inspectors attached to model engineering clubs, and is done at no cost.

However the materials for a boiler like this are quite costly.  I managed to obtain some  copper tube for the wrapper, and bought some copper plate for the firebox and boiler ends on Ebay.  Bronze for the bushes from a local bearing supplier (LG2), and firetube copper tube from local plumbing supplies.  All up, so far, is approaching $AUD1000.  And yet to be factored is the safety valve, various cocks, sight gauge, hand pump silver solder.  And I intend to make and fit a steam driven feeder pump, and possibly a steam injector.

If there is any interest in this project I will post progress notes and photos.  Let me know.