johnsmachines

machines which I have made, am making, or intend to make, and some other stuff

MORE ANCIENT GREEK TECHNOLOGY, THE ANTIKYTHERA MECHANISM

This mechanism was discovered in 1901, in a Roman era shipwreck, off the Greek island of Antikythera, which is a bit north of Crete.

It has been dated to between 100BCE and 205BCE, with the older date considered the best estimate.  ie, about 2200 years old.  Experts believe that its makers were Greek.

It is currently housed in the Greek National Archeological Museum in Athens.

IMG_4180.JPG

Not much at first glance, but when it was examined with modern scanning and X ray techniques…

Look it up on Wikipedia..

https://en.wikipedia.org/wiki/Antikythera_mechanism

According to the Wikipedia entry the gear teeth are too irregular to have been machine cut,

but watch the computer reconstruction.   Could you make this machine without a lathe and gear cutters?

How much more technology did the ancients have that has not survived the ravages of time?   A lathe for example.

ANCIENT GREEK MACHINING

I recently had a light globe switched on in my brain.

I was holidaying in Athens (the one in Greece), and was gobsmacked by the huge, fabulous collection of statues, mosaics, ceramics, gold jewellery and masks, bronze and iron weapons in the National Archeological Museum.   I took many photos, and might post some in later blogs.

Three items sent shivers down my spine.

  1. The gold death mask of Agamemnon (probably not Agamemnon’s but that is another story).
  2. The Antikythera machine.   More about that in a future post.
  3. A gynaecological speculum.

There was a display with many surgical instruments.  These have been found at various archeological digs in Greece, and while not precisely dated (at least not labelled) they are mostly from 500-200 BCE.

My eye was immediately drawn to an instrument which looked very familiar.  I was a gynaecologist in my previous life, and this could have come from my instruments. (except that the dark bronze surface might not have been acceptable to patients).

DSC_0570.JPG

Not a great photo, through a glass cover, and ISO cranked up to several thousand.

The instrument is labelled a vaginal dilator, but I am quite certain that it is a vaginal speculum.  A speculum is used to inspect the vaginal walls and uterine cervix.  (That might be too much information my metal working/ engine making/ machinery minded readers.  If so, too bad.)

It is said to be made of bronze.  The Ancient Greeks were highly skilled at metal casting, as evidenced by the many complex and beautiful bronze statues and weapons and implements on display.

It interested me for several reasons.  Bear in mind that not many archeology museum visitors are gynaecologists who know about making threads in metal.

It looks quite functional, and if cleaned up, given a shiny surface and sterilized it could be used today.

The threaded section is very regular and smooth.  I would loved to have taken some measurements of the thread with a micrometer, but had to be content with a prolonged inspection through the glass case.  The thread appears to me to be so regular, that it could not have been hand filed.  It must have been machine made.  I have seen hand made threads on medieval machines, and they are crude compared with this one.

Either this is not an ancient Greek instrument but a more modern instrument accidentally included in the display (pretty unlikely, considering the professionalism of the people involved).  (ps.  If you Google Pompeii speculum, you will see that similar instruments have been unearthed at Pompeii…  buried since 79ce.)

Or…..  the ancient Greeks had screw cutting lathes.

Ridiculous you say?

Wait until my next post about the Antikythera machine.  If if you just cannot wait, look it up.   It is mind blowing.

 

 

CNC Lathe conversion -16

The wiring of the lathe is complete.  (Except for limit switches.  They can be added at any time).

Mach 3 is configured.  The wireless hand control is installed and working.  Ezilathe installed and waiting for input.

Some covers to be made.

IMG_4154

Hook ups in progress.  That’s the faulty VSD on top of the electronics enclosure.  The CNC engineer lost his hair trying to figure out the problem.

Still some testing and fine tuning required.

But nothing much will happen in the workshop for the next  3 weeks.

 

 

CNC lathe conversion -15

Another couple of advances in the conversion.  Today I installed the lead screw cover and the cable protector to the cross slide stepper motor.

The cable protector was easy and straightforward. It flexes in one direction only, and is fixed at the ends after the cable is threaded through it.  The length is adjusted by adding or removing links.  It was placed so that coolant liquid will drain out of it, and to minimise the accumulation of swarf.   The cables themselves have a thick covering and are well protected.  The link protector will not kink, further protecting the cable.

It was cheap.  About $AUD20 for 2 meters, posted from China.  I used about 1.1m.

cnc lathe - 2.jpg

Showing the stepper motor cable protector, and the lead screw protector (one half of it.  The other half is on the other side of the carriage.)

The lead screw protector was another story.  It is a spring steel coil, about 50mm wide, and as it is compressed the coils fit inside each other.  I made a big mistake in allowing it to spring open before I had installed it (there were no instructions).  It immediately opened to a length of over a meter, in coils about 50-60mm diameter.   No big deal, I thought.  I will just compress it back to its original configuration.    Big mistake.

It was what I imagine coiling a live, oily, biting, boa constrictor would be like.  (OK, boas constrict rather than bite.  How about an anaconda, or a big eel.)

I fought it for about an hour.  And eventually succeeded.  Minus a few bits of my skin.

So I did not allow the protectors to expand again until after I had them on the lead screw.

This is what they look like.   Pretty cool IMO.  They just expanded into position when I removed the restraining clips.

cnc lathe - 3.jpg

The lead screw stepper motor and protector.  The Estop box above will get some ends to exclude swarf.

It was not cheap.  The best price that I could find was from South Korea.  $AUD200 inc postage.  But it is excellent Japanese quality.

The wiring is happening, but the variable speed drive seems to be dead.  It has been sitting unused on a shelf for 2 years, so no point asking about warranty.  Took it apart to check for broken wires, fuses, burnt out components etc, but nothing visible.  Will order another one.  About $AUD200.  An unexpected expense.

 

CNC lathe conversion -14

These lathe CNC conversion posts are probably becoming a bit tiresome, but just in case there is someone out there who is interested, I will continue until the job is finished.

The latest was to make and install a spindle speed (and position – thanks David M) sensor.  It consists of a disk with a slot cut in the periphery, attached to the main spindle.  And an opto-electronic sensor which is connected to its own electronic board, thence to the breakout board and VSD.

cnc lathe - 1.jpg

The disc with the slot at 8:30 and the sensor at 9:00.  I must have chosen the wrong cutter or turning speed for that disc aluminium…  looks a bit rough.  (note added 13/7    Stuart T says that I should have used coolant-lubricant).

cnc lathe - 4.jpg

View from above.  Any clearer?   That gear is now superfluous except as a spacer.

So there is one electronic impulse per spindle revolution.  That is enough to measure the RPM’s.   Essential for cutting threads.

The beauty of this system is that there is no gear selection or changing, and ANY thread pitch can be selected…  metric, imperial, BA  etc…  any odd ball thread that your heart desires.

cnc lathe - 2

cnc lathe - 3

The HTD (high torque drive, I am informed by many readers) pulleys and belts and taper lock fittings.  Unfortunately I could not find a taper lock to fit the small pulleys, so when it is all finally, definitely, absolutely, correctly,  positioned, I will Loctite them in position.  Protective covers yet to be made.  I quite like to see the mechanicals in action, so I am intending to make the covers from clear polycarbonate.(Lexan) .

CNC Lathe conversion -13

IMG_4125

Adjusting the lead screw.

The 48 tooth HTD pulley has been installed using a taper lock.

Then some time was spent adjusting the parallelism of the lead screw.  That requires quite a few movements of the carriage along the 600mm thread.  Each 360 degree turn of the lead screw advances the carriage 6mm, so you can understand that I became a bit impatient with all of the repetitive hand actions to move the carriage from one end to the other.

So this was a solution to that issue.  That HTD belt is the one that was too long, so I was happy to find a use for it.    The variable speed battery drill shot the carriage end to end in a couple of seconds.

All is now adjusted parallel.

A few more little installation issues, then for the wiring.

CNC Lathe conversion -12

Today I fitted the lead screw.

No big deal, I sense that you are thinking.  After all, the ends are machined, the bearings fitted, and all waits in readiness.

True, but there is a strict sequence of events.  And since it has been 3 or more weeks since it has been together, I had to rediscover the sequence, by trial and error.  And each bit of the fitting is very heavy, very delicate, very tricky.  So it took me several hours to get to the  final photo in this blog.

But first a view of the inside of the newly machined apron.

IMG_4122.jpg

 

IMG_4123.JPG

The lead screw fitted.  The cross slide screw is also fitted.  Note the red E Stop panic button fitted to the left.    Next job is to fit a support bearing at the right hand end of the screw.  Then to check and adjust parallelism of the screws.  A rough check showed that they are within 0.25mm

CNC Lathe conversion -11. Ball screw machining.

Hooray!

Today I collected the lead screw after the ends were machined by Statewide Linear Bearings.

I decided to drive the 100km each way to pick it up, in preference to using a courier.  I wanted to ensure that all of the small bits were there, and also just to make sure it was handled properly.  Mostly freeway, listening to Dan Carlin on the Persian-Greek wars, so it was a pleasant way  to have 3-4 hours to myself.  (If you do not know about Dan Carlin, Google him and download an episode.  If history at school had been like this, we would all be history addicts.)

IMG_4117.JPG

This is the lead screw, ends machined, and support bearings fitted.  1100mm long. 28mm dia

All good, except that the nut was back to front.  That nut is pre-tensioned, which means that the 2 halves are separated by a precisely machined washer.  I was nervous about removing it and replacing it the correct way around.  However I had previously asked the ball screw expert about that aspect, so armed with the technique I made up a sleeve of the correct size, removed the nut and replaced it.   No balls fell out.   So all good!  The above picture shows the nut in its correct position.

IMG_4118.JPG

The nut.  Looks expensive?  Is expensive.  And beautiful.

IMG_4120.JPG

The machined driven end.   $AUD250 machining there.  But it is perfectly done.

IMG_4119.JPG

And with the support bearing installed.  A pulley for the HTD belt goes on the distal bit of shaft.

 

IMG_4112

The CNC lathe has 3 belts. There is a V belt from the 3 phase motor to the main lathe spindle.  Although I changed the motor and the pulleys, the old belt fitted, which was good.  No hassle. But the stepper motors driving the lead screw and cross slide screw, and their pulleys were all […]

CNC Lathe conversion – 9

The CNC lathe conversion has been happening, despite no posts on the blog.

I have mounted the electronics enclosure, and mounted the various components inside.  No wiring yet.

IMG_4110

This stainless steel tool box is the electronics enclosure.  It fits the space quite nicely, and is adequately big.  The back gear cover to the right will be retained, although the back gears have been discarded.  The main switch and emergency stop will be mounted somewhere on this cover.

IMG_4109

The Variable speed drive (VSD) sits on top.  That will control the spindle speed.  The transformers, stepper motor drives, and Breakout board (the heart of the system) are positioned inside.  Plus cooling fan and filters.  Ready for wiring.

IMG_4107

Drilling the apron to attach the cross slide ball screw bearing.  One chance only at this one, so the setting up took a couple of hours.  The apron is clamped to a large angle bracket on the milling table.   M6 threading followed.

IMG_4108

The end result.  The bearing as attached to the apron and the ball screw is in place.  I machined the end of this ball screw to fit the bearing, cut a thread (M10x1), and machined the end to accept the pulley.  All good.  There is 0.25mm adjustment available if required, but it all seems pretty correct.  The bearing sits on a carefully machined block which is 7.85mm thick.   Still waiting the lead screw machining.(!!)

NOT MUCH GOING ON TODAY

IMG_4092

This is my workbench after I had almost finished tidying it.  Really.  

 

Then I thought about machining the ends of the cross slide ball screw.

IMG_4095

So I mounted the collet chuck and checked the runout.   0 to o.01mm.  Then I did a test cut in the ball screw.   Hard hard hard.  But it did cut.  Then I chickened out and decided to finish it another day.

So, looking around the workshop for something else to do, I decided to pretty up the new CNC lathe apron.

IMG_4087

Before (milled surface).

IMG_4093

During

 

And I forgot to take a photo of the after, but it did look nice and smooth and shiny (look at the mirror finish behind the wheel).

Being retired is great!

Workshop Tidy

I sometimes feel a bit ashamed when I have visitors at my workshop.

The reason is that when I am in the middle of a project, I really concentrate my energy on the decisions, the machining, working out how to fix the mistakes…

…. and tidying up as I go, is near the end of the list of must do’s.

Consequently, tools tend to be put aside at the spot where I have been using them.  And off cuts of steel or brass or wood or whatever, lay where they fall.

And as mentioned in a previous post, I have a policy of leaving swarf on the floor, to discourage wildlife from slithering into my workspace.  (see the old post about the tiger snake between the lathe and the milling machine).   And if you are not Australian, look up tiger snakes.   They are just about the most dangerous reptile on the planet.

So my workshop is not the tidy, organised sort of workspace which you might expect from a retired gynaecological surgeon.

But occasionally, the mess becomes so extreme, that I cannot find tools, I trip over stuff on the floor, everything is really dirty, and it is dangerous and embarrassing when visitors call in.  And some of those visitors have workshops where you could eat off the floor.

So yesterday I spent a whole day tidying, sorting, putting away tools, throwing out rubbish, and sweeping the floors.

What about the tiger snakes I sense you asking.

Well, here in the antipodes, we are in the depths of winter, and it is bloody cold.  And all sensible cold blooded reptiles are asleep in their homes. So for a few months it should be safe to sweep up the swarf.   Here’s hoping anyway.

CNC Lathe Conversion – 8

Continuing the installation of the ball screws, and stepper motors.

I have completely removed the digital read out module and glass slides, and they will not be reinstalled.  Not sure what I will do with them.   They are only a year or two old, and in good condition.  I will probably put them on Ebay.  Same with the old gearbox, carriage apron, and electric controls.

Here are some pics of the plates and blocks which support the ball screws and steppers.

IMG_4089.JPG

This is the steel plate at the headstock end, bolted to the bed.  And the block with the holes is cast iron 42mm thick, to support the leadscrew and leadscrew stepper motor.  It was machined out of an old piece of machinery, hence some unintended holes.   Being cast iron it was fairly easy to machine, but incredibly dirty. Turned everything in the workshop black, including me.  (whoops.   Unintended not PC)

IMG_4087.JPG

This is the block which replaces the gears and controls of the apron under the carriage.  The thick block is cast iron, and the stepper motor support is 20mm thick steel.  Very heavy.

IMG_4086.JPG

This plate is hidden under the carriage.  It secures the lead screw nut.

IMG_4085.JPG

The slot in the carriage had to be widened and deepened a bit, in order to accomodate the slightly fatter and taller cross slide nut.  See the next photo to see the setup for milling the hole through the carriage.

IMG_4084.JPG

A rather confusing photo.  The carriage is clamped to a large angle plate on the mill, and I am enlarging the hole which accommodates the cross slide ball screw.  It was at the limit of what my mill could manage.  An intermittent cut, with a lot of tool stick out.   Not the best way of doing the job, but it worked OK.

IMG_4088.JPG

Plastic covers attached to the stepper motors, and toothed belt pulleys fitted.

IMG_4075.JPG

Checking the centres between the pulleys, using 2 wooden wedges to push the pulleys apart.

IMG_4083.JPG

The underside of the carriage.  The hole and channel at the left side of the picture was machined to accept the larger cross slide screw

So you can see that I have been busy since the last post.

At present the lead screw is at Linear Bearings in Melbourne, having the ends machined to accept the driving pulley, and support bearings.  I did consider doing this machining myself, but decided to leave it to the professionals because of the high cost of the item and the hardness of the material.

CNC Lathe conversion-7

I am still waiting for the replacement ball nut for the lathe cross slide to arrive.

Meanwhile, I have been busy machining the supports for the lead screw.

IMG_4054.JPG

Drilling the holes for the support bolts for the lead screw nut

IMG_4055.JPG

And gradually drilling the hole to 49mm!

IMG_4059.JPG

That is a 49mm drill!  First time that I have used it!  Thank goodness for the  FS Wizard app, to give me some idea about feeds and speeds.  Following this I used a boring head to enlarge the hole to 55mm.

IMG_4063.JPG

Gradually enlarged the hole in 20mm steel to 55mm diameter.  and here is the lead ball screw, sitting roughly in its proper position.

IMG_4064.JPG

So this is where I am at.  The lead ball screw is sitting approximately in its correct position.  Considerable adjustment required.  And I am yet to turn the ball screw ends to their correct dimensions.

CNC lathe conversion-6. EBay problem

My first hitch occurred today.

I was very excited to receive the nut for the cross slide ball screw.  If you have been following these posts you might recall that the ground ball screw for the cross slide came from Taiwan, and arrived in 3 days.  But I had to order the nut from a seller in USA.  The nut was advertised as new old stock, but with no packaging.  That was OK, but the postage cost for such a tiny item was ferocious.

It was the last item to arrive from overseas.   However when I looked at it, it was obviously NOT new.

IMG_4043.JPG

The cap screws holding the ball recirculating tube were different from each other, and the washers underneath were too big for the screws.  Obviously not the way that TNK made it.  Somebody has had the nut apart.  And the ball retaining tube was very scratched  and loose.  Again, not TNK standard.

But no biggie.  If it works — fine.

So I turned up a retaining tube to remove the previous nut from the ballscrew, and it came off without any drama.

cnc lathe - 1

But when I tried to fit the “new” nut, it just would not go on.  Tried reversing the direction.  No go.  Bugger bugger.

Somebody has altered or changed the “new” nut.  Maybe installed balls which are too big, or maybe damaged the entry thread.  I do not know.

What to do.  I have been waiting 2 weeks for this to arrive.

First, Ebay email to the seller.  See what the response is.  Ask for a refund.  The postage was almost as expensive as the nut. If unsatisfactory response, they will get the worst Ebay feedback ever.

There is one other seller of these nuts on Ebay, also in USA, and 50% more expensive, and the postage is also 50% more expensive. (how DOES ebay come up with the postage charges.  It seems more related to the cost of the item rather than the weight-size etc.)  But the nuts are in original packaging.  And I want to get going with this, so fuck it.  Pay up and get it.

I will report in a later post.  (if the bad language in this post seems to reflect my state of mind, well, yes it does.)

 

PS.  Next day.  After sending photos of the issue, the seller accepted responsibility, and I am getting a full refund.  That restores my faith in Ebay/Paypal.   I hope that the next one is in better condition, and comes a bit more quickly.  Sorry for the bad language.

CNC Lathe conversion -5

This is a list of the components which I have accumulated to convert a manual lathe to a CNC lathe.  It is not quite complete, but close.

  1.  Lead ball screw and cross slide ball screw.  Both with nuts and end bearings.  (no pic yet)
  2. The electronic components.
IMG_4021.jpg

The electronic components, not including computer and parallel cable and manual pulse generator.

IMG_4023.JPG

Two stepper motors.  Nema 34, 1200 inch – oz.  With rear covers.

IMG_4024.jpg

A Gecko microstep drive for each stepper motor

IMG_4022.JPG

Cable and connectors for the stepper motors

IMG_4026.JPG

A transformer-power supply (48 volt)

IMG_4025.jpg

Another transformer-power supply (5 volt).

IMG_4034.jpg

3 phase 1.5kw motor (top) to replace the single phase motor (bottom)

IMG_4031.JPG

Timing belt gears 24 and 48 tooth, 5M.  Order belts when size is definitely established.

IMG_4032.JPG

FK20 lead screw bearing and Ball screw covers

IMG_4028

The electronic heart of the system- the breakout board.  A C11R9

IMG_4029.JPG

The index pulse board and sensor.  A C3.

IMG_3342

Manual pulse generator, wireless.

IMG_2718

Variable speed drive, identical to this one on the mill

IMG_4035.JPG

An electrical enclosure, to hold the various components.  This stainless steel box was originally an item of medical kit.  Here I am checking out one possible location.  Not yet definitely decided to use this.

Finally in the electronics section, I will need a computer, loaded with Mach3 and Ezilathe.  Surprisingly, it does not need to be a particularly powerful PC.  And there are advantages in using an older operating system such as  XPpro.  I think there are a couple of those in the attic.  If not, I should be able to pick one up for under $100.

3. Various structural items.  Most of these will be 20mm thick x 200mm wide steel, cut to size and shaped and drilled.  I will take pics of these as I make them.  I was planning to have them water jet cut, but the shapes a fairly simple so I will cut and machine them myself as I go.

So, that is most of the items for the job.  I have spent about $AUD1100 on the ball screws and nuts, about $AUD1500 on the electronics and electrics, and maybe another $AUD500 on pulleys, belts, steel, taper locks, fasteners etc. I will add it all up accurately at the completion.  The lathe was cheap, bought sight unseen a few years ago.   So all up, I should have a CNC lathe for under $AUD4000.  And many pleasant hours of design and machining.  And a great learning exercise.  Stay tuned!

CNC Lathe conversion -4

I am in the process of collecting all of the components for the conversion.  Parcels are arriving from South Korea, Taiwan, China, USA and Australia.  Next post I will take a photo of the bits, before I commence assembly.  I have spent a lot of hours on the computer drawing up the positioning of the new components, deciding which components to get, then communicating with the sellers and making the purchases.  Not to mention hanging around home when parcels are due.  If I duck out for 10 minutes, that’s when the delivery van arrives.  And of course he leaves his little card “sorry we missed you”.

This post I will show you some of the drawings of the proposed conversion.  Of course the first step is to strip the lathe of all of the old manual controls, gears, motor, Digital read out, carriage apron, lead and cross slide screw, electric control box and contents.  (taking photos of every component insitu in case of a change of mind, and restoration required later).

Then measuring the bed and carriage in minute and accurate detail, and drawing it in CAD.

cnc lathe - 1.jpg

This is the lathe side on and end views, showing the new lead ball screw in red and green.  The cross slide ball screw is also there, but not well seen at this scale.  The 4 ball screws at top left are the possible combinations for eventual installation.  The second red one is the position eventually decided.  The green ones are with the nut re-installed in reverse direction.   I really did not want to remove and re-install the nut, because it is pre-loaded, and I do not want to risk disturbing the setup.

Many drawing versions are required, and as the components arrive, I find myself making changes.  This is definitely not the final version.   The two carriages show the carriage in its extreme positions on the lathe bed.

cnc lathe - 1 (2).jpg

This was an early sketch of how I thought I would arrange the cross slide motor and lead screw nut.

cnc lathe - 1 (1).jpg

This is a fairly accurate drawing of a cross section through the cross slide.  Black is existing.  Red is the new nut and ball screw.  You can see that removal of some of the cross slide bed iron will be required.  After looking at this I decided to move the nut and screw up a couple of millimeters.

cnc lathe - 1 (3).jpg

The Internet has been very useful in showing what fittings are available.  These are a few of the catalogues and tables which I have downloaded.  Some sites even provide CAD drawings so their components can be inserted into my CAD drawing to see if they will work together.

Ball Screws -2

This is a brief post to give a 10/10 rating to an Ebay seller with whom I have had dealings recently.

I have bought 2 ball screws and ball screw covers and ball screw bearings in 3 separate transactions from a supplier in South Korea.

Postage was included in the “buy it now” price.  In one case I offered a lower price, which was accepted within minutes.

After paying by Paypal, I received confirmation within an hour in each case, that the item had been shipped (actually air freight by Fed Ex).

In each case the items were delivered to my door in Australia within 3 days!  (it takes 5 days to get a parcel posted from Melbourne to Geelong, a distance of 65km).

And in each parcel there was a very nicely handwritten card thanking me for the purchase, and promising support if there were any issues with the items.

One ball screw was brand new, repackaged as advertised.  The other was used, salvaged from used machinery, but in “as new” condition.   Both were C5 grade, which is normally stratospherically expensive and has to be specially ordered.  They were priced only slightly higher than new rolled (lower grade) ball screws.

They were very carefully packaged in heavy duty cardboard rolls with metal ends, and multiple layers of heavy plastic and foam sheeting.

I made a later purchase which involved the seller removing a part from a machine.  He added it to a parcel which I had also ordered and wrote that I could pay later for the part if I was satisfied with it.  The price for the part (a THK bearing) was $UAUD32.  The same part new here would cost $AUD400.

In every case, communications have been  answered within a few hours, polite, personalised and in excellent English.

My only complaint, and it probably relates to the shipping arrangements, is that there appears to be a size restriction on shipping to Australia, of about 1200mm.  (p.s.  apparently the “do not ship to Australia” are old adverts, and there are no restrictions now.  A message to dy-global is all that is required to get any item shipped).

I hope to deal again with this company.  The name is dy-global.  To find them you need to search Ebay USA, or use the international settings on Ebay Australia.

THROAT CUTTER WALL SMASHER

Some pics which we snapped a few years ago of a large bombard, sitting outside the wall of the “Throatcutter” castle (RumeliHisari), a few miles from Istanbul-Constantinople, overlooking the Bosphorus.  This castle was built by the Turks in order to control the Bosphorus waterway, just before they besieged Constantinople in 1453.

The cannon was clearly placed in this current position just for display.

Could this have been the one which breached the Theodosian walls in 1453?  It seems to be an  appropriate size and style.

 

large cannon2.jpg

That’s a younger me.  No name plate  about the cannon.

 

 

 

large cannon bore.jpg

The bore is about 600mm.  The narrow part near the breach is the powder explosion chamber, with an enormously thick wall.  The original cannon was recorded as requiring 60 oxen and 400 men to drag it from its casting place.  And a gun crew of 200 men.  Cast in one piece.  (later note:  not sure about cast in one piece.  I will be in Istanbul soon.  I will try to determine construction.)

This could well be the original Orban cannon.

Updated Notes :

The Orban cannon was recorded 8.2 metres (27 feet) long, so the one in the photos cannot be it, unless the recorded figures are exaggerated.  Orban did cast additional smaller cannons for Mehmet 2 for the seige.

The biggest Orban cannon at the seige was named “Basilica”.  It fired  stone balls weighing 272kg (600lbs) over 1.6km (1 mile).   Reload took 3 hours.  The stone balls were in short supply.  Not surprising, considering the labour which must have been involved in making them.

Orban is thought to have been Hungarian or possibly German.

 

COMPRESSED AIR ON THE CNC MILL

Compressed air is very, very useful on the milling machine.  The tool changer uses air for fast tightening and release.  And I often use air to clear the field of swarf, and shavings (yes, I use my mill for wood  too).

Recently, at the suggestion of Stuart L  of stusshed.com fame, I installed 2 semipermanent nozzles on the mill, with adjustable direction and pressure adjustments.  It has been a quantum leap improvement.

carronade - 1.jpg

The pic shows the jets aimed during CNC end milling of wood.  The wood shavings are blown away which makes it easier to see how the milling is progressing; blows them away from me which is safer and cleaner; and stops the chips being machined into the work, which leads to a cleaner cut.  It also improves any video or photo of the progress.  It must also cool the cutter, although not as effectively as a liquid coolant.  I have not tried using the misting attachment, which would improve the cooling, but at the cost of dampening the area and the work.

I particularly like the improvement experienced when machining brass or steel.  The swarf is removed from the advancing cutter, preventing it being re-machined and squashed into the workpiece.  I am noticing better surface finishes.  I also adjust the air direction to keep the swarf away from me;  particularly valuable when brass needles otherwise would be flying at me.

When cutting pockets, the air keeps the pocket free of swarf, and when using tiny endmills at high speeds I am experiencing fewer tool breakages.

This gadget was inexpensive ($AUD12) from China.  It does not work the compressor too hard when the volume is turned back as far as possible, but still adequate.  Although there are 2 jets, I find that only one at a time is adequate.

Recommended.

As an afterthought.   I rarely use coolant on my lathes, but an air stream on the cutter and workpiece would probably have similar advantages to those listed above.  I particularly wonder if it would assist during deep parting…   always a tense procedure.  I suspect that the cutter becomes hotter and expands more than the workpiece parting slot if there is no coolant.  I will mention the result of air cooling and chip clearing on the lathe in a later blog.

Follow

Get every new post delivered to your Inbox.

Join 102 other followers