johnsmachines

machines which I have made, am making, or intend to make, and some other stuff. If you find this site interesting, please leave a comment. I read every comment and respond to most. n.b. There is a list of my first 800 posts in my post of 17 June 2021, titled "800 Posts"

Tag: rifling

Rifling the Model Armstrong RML

P1053702

The HSS cutter is mounted in a tight 3mm wide slot in 16mm silver steel.  The 4 mm cap screw pushes the cutter up by 0.2mm per full turn of the screw.

The following video shows an air cut of the rifling cutter in the CNC rotary table on the CNC mill table.   Then some actual cuts in a 1:10 scale cannon barrel.  This barrel was a reject, and was used to practice the rifling cuts.

You can click on the arrow in the box below, or see the video full screen in YouTube.

 

Laser Cutting High Speed Steel

As previously detailed, the rifling cutters which were made from a broken Brobo blade were unsuitable because I had not taken into account the thinning of the blade due to hollow grinding.

So I bought some high speed steel in the form of woodworking thicknesser blades, which were 3mm thick.  Also, I redesigned the cutters to be a bit more robust, and take a 4mm pin instead of the previous 3mm pin, which looked a bit spindly.

IMG_4473

6 cutters from one thicknesser blade 225mm long, 3mm thick

IMG_0097

3.03mm thick.  Just right.

 

NBN. At Last!

And about the last.  The fibre optic network was commenced about 3 years ago, and I applied for a connection shortly after.

Despite living in the centre of Victoria’s second biggest city, my house was not connected to the National Broadband Network until today.

Until then I have coped with download speeds as low as 1mb/sec, and uploads as slow as 60kb/sec.  Do you wonder why I upload so few videos?

Today, the NBN was finally connected.  The download speed is a blistering 50mb/sec, and uploads 25mb/sec.  Wow!

Just to celebrate, I am posting some pictures.  Not much to report from the workshop, but I am accumulating some items in readiness for rifling the model cannon bore.

P1053654

This photograph would typically have taken 60-120 seconds to upload previously.  Today it took about 5 seconds!    As you can see it is a cold saw blade which has seen better days.  My bad, unfortunately.   But I saved the pieces,  because these blades are made of high quality tool steel.  I have had some parts laser cut .

P1053653

The laser cutter left the tabs intact so the tiny parts would not be lost.

P1053655

The 2.5mm thick part popped out with a bit of finger pressure.  Not much tidying up required here, but I will sharpen the cutting edge.  This will be the cutter for the rifling of the model cannon.

This is the first time I have had parts laser cut, and I am impressed by the accuracy and smoothness of the cut and the narrow kerf (0.2mm).    Oh, and the cost.  It was surprisingly inexpensive.  ($AUD26).

 

Model Cannon Barrel. (T)rifling Thoughts.

My aim (as it were) in making this model cannon is to have a high visual quality exhibition piece.

It is a 1:10 scale model, 1866 Armstrong 80lb, rifled muzzle loader, blackpowder cannon.

One question which always arises is whether it will be actually fired.  My answer is that if it could be fired legally, it would be nice so I could make a video.  However, Australia has very strict gun control laws, (with which I totally agree), and I do not intend to flout those laws.  So this gun will not be capable of being fired.  It will have no touch hole.

To satisfy the visual appearance of a touch hole there will be a laser printed dot at the location.  Along with laser engraved Queen Victoria insignia, sight lines, etc.

But, it IS a rifled cannon, so I do intend to rifle the barrel.  And that needs to accomplished before the trunnions are fitted, and after the cascabel is fitted, so the orientation of the rifling is as per the original.

P1053354

The original rifling.  The 3 grooves are each 30mm wide, (clockwise or anticlockwise, not sure) and extend up to the edge of the powder chamber.  They are about 2 mm deep.  The powder chamber is slightly wider than the barrel bore, being continuous with the depth of the rifling grooves.  It is academic, because it will not be visible, but I will make it (the powder chamber, and the whole model) as accurately as I can, for my own satisfaction.  Fortunately the powder chamber is accessible to machining from the breech end, because the cascabel is screwed into position, and is removable.

Yesterday I started making the cascabel.  It was difficult.  The steel thread is lathe cut first, then the shape is lathe CNC’d.  Then there is milling the insides, and making a removable pinned rope retainer.  The third attempt was the most successful, but I am still not satisfied, and so there will be another one made today.   This is what I have so far…

P1053635

The turned barrel, threaded to accept the cascabel.  More work is required on the cascabel.

P1053642

The cascabel is mounted in an ER40 chuck.  It has been drilled and milled, and a removable insert is temporarily glued into place pending more machining.

 

Rifling.  Searching YouTube reveals multiple tools and setups from US sites.  Here are a few screen shots to show you some varieties.

From the sublime ….

Screen Shot 2020-02-16 at 8.29.10 am

to the other extreme…

Screen Shot 2020-02-16 at 8.39.12 am

No.  I will not be using a PVC pipe lash up.

The amateur designed and built machines are interesting….

Screen Shot 2020-02-15 at 9.15.27 am

Sine bar on the right.

Screen Shot 2020-02-16 at 8.23.12 am

Screen Shot 2020-02-16 at 8.24.24 am

Then there is the method of pressing a button cutter through the bore.  My bore is an odd size, so if I used this method I would need to make my own cutter.

Screen Shot 2020-02-16 at 8.36.35 am

Screen Shot 2020-02-16 at 8.29.57 am

This one is a computer animation of a 19th century rifling machine, now a museum exhibit.   Can you see the barrel?   Armstrong probably used a much larger version of this type to rifle his cannons.

 

But I think that I will use none of these methods.  I have a CNC mill and a CNC rotary table.  Mach3 can control both of these machines simultaneously.   If I mount the cutter assembly in the rotary table, and the cannon barrel to the mill quill, I should be able to cut the rifling grooves.  Still working on this one.