johnsmachines

machines which I have made, am making, or intend to make, and some other stuff. If you find this site interesting, please leave a comment. I read every comment and respond to most.

Tag: Arduino

Arduino Controlled Indexer-2

Most of the bits and pieces have arrived for this project, so I made a start on the machining today.  I used 80mm dia aluminium rod to make the stepper motor support piece.

IMG_4959.JPG

Stepper motor (right), flexible 8-12mm shaft coupler, and the rotary table shaft (left)

IMG_5008

I cut a 92mm cylinder of aluminium, squared the ends, centre drilled a face, drilled it out to 25.4mm, shown in this photo.  Note the 4 ribbons of swarf coming off the work.  The drill bit is an industrial stepped bit, with 4 cutting lips. Then the hole was bored to 28.80mm.

IMG_5011.JPG

An upside down photo of the stepper motor (left), motor support which is hiding the flexible shaft coupler, and rotary table (right).  Next to drill and tap for the bolts, and provide access holes for the coupling screws.

IMG_5013.JPG

And some more milling to convert the cylinder to a rounded square section, then drilling and tapping for the grub screws and bolts for the stepper motor.  (tapping with the Mogens Kilde tapping head in the picture).

IMG_5014.JPG

The finished support block

IMG_5015.JPG

Mechanicals finished.  Now for the electronics.

Project in the Wings.

While finishing the triple expansion steam engine, I have decided on my next project.  Actually, based on my past history of procrastination with the triple, I might even put aside the triple to start on this one.

Reading this article in “Model Engineers’ Workshop” gave me the inspiration to convert a rotary table to electronic control.

IMG_4926.JPG

Dec 2016 MEW article

So I have commenced accumulating the bits and pieces…

IMG_4876.JPG

An 8″ Vertex rotary table.  I have had this for years, but unused since acquiring a universal dividing head.  Should be ideal for this project.

IMG_4908.JPG

A Nema 24 Stepper motor, shafts at each end, so I can use the table manually as well as electronically.  The Microstep driver was supplied packaged with the motor as a kit.  $90AUD inc postage.

indexer pwr.JPG

From the same supplier, a 48volt power supply.  $38AUD

Arduino uno.JPG

The brain of the system.  A programable microcontroller “Arduino Uno”.  I bought 5 of these for $20AUD post included.

arduino display shield.JPG

And an easily attachable display.  To attach the Arduino.  $19AUD

arduino book.JPG

And since I knew nothing about Arduinos, a “Getting Started” book.  Excellent.  On loan from a friend (thanks Stuart)

arduino kit.JPG

And to practice some circuits and get some idea about the Arduino programming, a starter kit of bits and pieces.    $75AUD, but has been very instructive and loads of fun.   The program to run the Arduino is downloadable free from the Internet, so this kit might be a bit superfluous.

And some items of kit.  Each under $20AUD.

magnifiers

A magnifier soldering station, and head light and magnifier

multimeter

A very cheap multimeter.  Previous purchase.  Works fine.  $10AUD

I have disassembled the rotary table, and ordered a 12/8mm coupler.  I am waiting for the coupler before I start designing and cutting the main part to be fabricated which is the piece which joins the stepper and the table.

Also ordered a box to contain the electronics and switches.  Havn’t yet thought about cables,  joiners etc.