machines which I have made, am making, or intend to make, and some other stuff. If you find this site interesting, please leave a comment. I read every comment and respond to most. n.b. There is a list of my first 800 posts in my post of 17 June 2021, titled "800 Posts"

Tag: beam engine

Royal Geelong Show 2019

The “Show” was held over the last 4 days.  I will not bang on again about my republican leanings.  See posts from previous years if that persuasion is of any interest.  The weather was ordinary.  Quite a few showers and blustery wind.  But we were mostly warm in the Vintage Machinery shed where our Model Machinery cage is located.  Fairly good visitor numbers, but not much real interest in our model engine offerings.

I exhibited my beam engine and Trevithick dredger engines, both running on piped steam.  The vertical boiler and feed pump was on static display, of no interest to anyone.  My Stirling engine got the most attention from kids, who are attracted by the swirling spiral colours, and not much interest in the intriguing method of running.  I am convinced that models must be moving, colourful, and have some relation to what people and kids see on television if they are to have any traction with the public.

But, the model and full size engine exhibitors enjoyed the displays, and an occasional visitor engaged in conversation.  Here are some pics and videos of some of the shed displays.  There dog shows, bird breeding, monster trucks,  horse riding events, cattle and sheep judging, and side show rides but these were not recorded by me.   I did visit the Amateur Astronomy display, and will visit the workshop of one of the exhibitors soon.

50 yrs vintage machinery.JPG

Beam with lagging.JPG

I had applied wooden lagging to the beam engine cylinder

Package boiler and Trevor.JPG

Steam for the engines is provided from this Package Boiler at 25psi.   Enough to turn them over.  Capable of much higher pressures.

Package boiler diag

cage bench north

Cage Bench North includes the Trevithick dredger model, the beam engine and the Stirling engine.

Cage bench south

Cage Bench South.  Swen Pettig’s prize winning flame gulper, and 1″ Minnie under construction.

Stuart swen

Stuart and Swen ?discussing engine repairs.


Model Engineering first prize!


And the full size triple expansion engine.  The Vintage Machinery boiler is being upgraded, so there was insufficient steam to run the triple.



Workshop with security

Every time that I open my workshop I wonder if it will have been robbed.  So far, I have had unsecured implements which are stored outside, stolen, and an attempt at stealing my Landcruiser ute, but no breaking and entering of the workshop itself.  Mind you, any thief would have a tough time working out what to take…   everything is scattered around, sitting where I last used it.  And then there are the tiger snakes….

Reader Brendan has a couple of guard dogs for his workshop when he is not present.

Brendan guard dogs.jpg

They might not look too scary, but they do make a hell of a racket when a stranger approaches.

And Brendan’s workshop is not all in one location.  I counted 5 separate locations….

Brendan office.jpg

The computer room and security monitor.  Mostly CAD and G codes here.

Brendan laser cutter.jpg

The laser cutter occupies the entry porch.   See the backing board pattern?  That is from the gasket for my Trevithick engine.

Brendan bench.jpg

Then the main workshop.  Hmm… what is that red thing?

Brendan bearing press

Brendan lathes.jpg

2 lathes in the garage.  Hafco with DRO, and CNC with Siemens controller.

Meanwhile, in my workshop…

I am taking some of my stuff to an exhibition at the Royal Geelong Show in a week.  The beam engine working on steam always gets some interest.   And the Trevithick dredger engine has not featured at this event before, so that can go.   I am currently working on the vertical boiler.   The Southworth Duplex pump which is attached to the boiler, was working on air, but it refused on steam, so another tear down is due.  If I can get it going that will be the third entry.  If not, well, there is always next year.   Fortunately Keith Appleton recently produced some videos on the Southworths, one of which had a similar problem, so I think that I know where my problem is.

Incidentally,  I showed the beam engine, the Trevithick, and the boiler at an exhibition in Melbourne last weekend.   Mostly well received.  But I had a succession of people who said of the beam engine “very nice.  Except for the cap screws.”  When it reached 6 separate commenters on the same theme I was starting to suspect a conspiracy from these rivet counters.   Yes it does have cap screws as the main fasteners.  And no, they are not true to the period (late 19th century).  But I quite liked the look of them.  But, one does prefer approval in preference to criticism, and after this concerted barrage of criticism, I relented, and spent a couple of workshop sessions swapping out the cap screws for studs with hex nuts.


The before.  With cap screws.


After the upgrade with studs and hex nuts.  Was it worth the 2 workshop sessions?

Sometime soon I will paint parts of this engine, and apply wooden lagging to the cylinder.



Tin Mines

One of the essential discoveries by our ancestors, in taking us from being hunter gatherers to “civilised” sapiens, was how to make metal implements, weapons, instruments and engines.  Copper was the earliest.  Probably found by lighting a  camp fire over a rock containing copper, and seeing it run.  It could be moulded into useful implements, but it was soft, and maleable.

Copper and tin often are found close to each other, so it is possible that the ancient camp fire melted both tin and copper to form bronze, which is much harder, and still used in the space epoch, as a hard, good conducting, mouldable metal.  Or more likely, that some copper which was melted and cast into something useful, was contaminated with tin, and the accidentally resulting bronze was found to be much harder and more durable than copper.

The problem is that tin is a relatively rare metal in earth’s crust, and its most common occurrence is in the form of crystals of cassiterite, which are inclusions in granite.  There is evidence that tin has been used since ~2000BCE.  Ancient man probably mined surface deposits of cassiterite in various locations, most particularly what is now Cornwall, UK.  Tin was traded from Cornwall long before the Romans arrived, and by then, was obtained by deeper mining.  Mining continued even though iron was available.  Bronze lasts  much longer than iron.  Indeed, many more bronze implements and weapons have been discovered from antiquity, because the iron ones have rusted away to nothing, and the bronze items often are in close to perfect condition.

Tin and copper mining continued in Cornwall until very recently.  I am not aware of any commercial mines currently operating.   But the evidence of mining in the 18th, 19th and 20th centuries is everywhere to be seen in the form of smoke stacks, and engine houses, which once housed mighty steam engines.  In the past 2 days I have visited 3 mines, which have differing approaches to tourists.  They were The “King Edward Mine Museum”, “Geevor”, and “The Levant”.  I did photograph Ding Dong from a distance, because that was the mine of which Richard Trevithick was the captain.

King Edward Mine Museum.  Although the site of a mine, this is a museum of mine engines, boilers, and machines to separate the tin ore from the parent granite.


From a steam beam engine which provided power for the winding winch, the beam and connecting rod.


19th century photo of miners on a “man engine”.  To decrease the time it took for miners to climb up and down ladders, sometimes up to 2000 feet(!) to get to and from the working face, this was devised.  There is a series of wooden beams, fastened together end to end, totalling the length of the depth of the mine, and every 12 feet there is a small step.  A steam engine at ground level raised and lowered the wooden beams and steps every few seconds by 12′.   The miner had to step onto the moving step, be raised 12′ then step off onto the platform above.  Perfect coordination and timing was required.  Even using the engine, it would take 30 minutes to go up or down 2000 feet.  Needless to say it was dangerous, and many injuries, amputations, and some deaths occurred from miscalculation.  There was a disaster at the Levant Mine where the main beam broke, killing 31 men who were on the man engine.  OH&S is not total BS.


The remains of the engine house and chimney at King Edward Mine.  Granite blocks were preferred to hold the weight of the large beam engines.  And the beam weight was taken directly by the walls.

Geevor Mine closed later than King Edward, and the ore processing machines are substantially intact, and date from early 20th centuery.  It is on the coastline of Cornwall.


Geevor Mine.  The tower with the wheels is the headframe.  The engine house is on the right.


Like gold sieves, the denser tin ore is sieved from the lighter rocks.  The bottom machines are a last phase of grinding.


Boilers.  Lancashire type I think.  (my bad.  Not Lancashire.  Egg end


Ore train, battery powered.  Earlier they tried small steam engines, but the smoke was a problem, so they used horses to pull the empty trucks back to the loading areas.  The loaded trucks went to the bucket lifts down a gradual slope, using gravity.  The horses spent 2 months under ground, and were carefully looked after because of their cost, and the trouble of getting them down and up.  At the end of two months they were blindfolded and legs tied, and were lifted using the ore lifting whim.  They were kept in a dark barn for 2 weeks, then allowed out for 6 weeks, before going undergound again.


Water wheel powered ore crusher.

The final part of this tour, was a walk undergound, through a 350 year old mine, later used as an access tunnel.  They issued us with a helmet and raincoat, and both were absolutely necessary.  The tunnel was about 5′ to 5’6″‘ tall, so the helmet took a battering. The walls were wet, and the roof constantly dripped and ran.  Sometimes the walls were not vertical, but sloped markedly.  Our guide used to be a tin miner, and he told us that they disliked the irregular access, because after placing a charge of black powder, they had approximately 30 seconds to clear the area.  Falling over, or being too slow was a bad option.  And it was pitch black when the lights were out.  This tour is not for everyone.

Prior to pneumatic drills, water fed tools, the charge holes had to chiselled by hand.  One person holding and rotating the drill (chisel), and one or two miners swinging heavy sledge hammers.  Typically it would take 2-3 hours to chisel the 6-8″ hole to take the charge of powder.  They made their own fuses using goose quills end to end, and filled with black powder.   This was granite containing the tin ore.  Very hard stone.  Very few timber props were required once the mine was well undergound.




This is a 3D model of one mine’s shafts, adits, and tunnels.   100 miles altogether.  2000 feet deep, and extending inland, and out under the ocean floor for 2000 feet!   Surprisingly, the part under under the ocean was the driest, and was fresh water, except when they accidentally mined up too far.

The final mine which I toured was the richest.  The Levant mine.  It is of great antiquity.. 3000 to 600 BCE and intermittently mined until 1930.  It never really recovered from the Man Engine disaster of 1919.  It is now a National Trust site, and the tour was one of the best I have experienced anywhere.  Again the tour guide was an ex tin miner.  He looked the part, with missing teeth,  west country brogue, and built like a T34 tank.  He was a superb raconteur, with a wealth of stories and knowledge, and answered every question with assurance.  We visited many parts of the complex, including a trip into a mine, with a huge vertical shaft at the end.  Counted the tourists in and out, and radioed the manager in and out.  The tour ended with a visit to the steam driven whim engine.  It was the only engine saved after the closure.  The rest were scrapped.



Levant mine is perched on top of rugged Cornish cliffs.  The cliffs were mined by ancients.  The adit (water drainage tunnel and mine entry is down near sea level.  We did not venture down there) opens near the bottom left of the pic.


A small part of the Levant above ground complex.




The valves of the beam engine


The beam.  Not the biggest, but it is working on steam.  1840.  Restored 1985.   24 rpm.  690mm bore, 1200mm stroke.  Direct drive to the winding drum.


I do not have enough space for videos of the engine operating, But will put them on YouTube later.

I have not touched on the topic of women and children working in the mines.  It happened until well into the 20th century.  Look up “Bal maidens” for information on women in the mining industry.  They were a strong lot.

Another highly recommended place to visit.

Bolton Steam Museum

I was a bit unsure about visiting this one.  A smaller museum, and I knew from the web site that it was not a steaming day.  But it was only a half hour drive, so off I went.  I arrived at the address, and there was a supermarket, but in a corner of the supermarket block there was a tall, old,  sizeable red brick building with no windows.  And a sign… “Bolton Steam Museum”.

In I wandered, and a gentleman in overalls approached.  This was a volunteer working day.  But Ian (apologies if I got the name wrong), stopped his task and spent over an hour showing me around, explaining the finer points of his babies, starting some of them on electric motors to demonstrate the movements, then invited me to a cuppa with his mates, where there was further discussion, mainly about rope drives and stone engine bases.

No parking or entry fee on a non steaming day, (but a donation was appreciated).

The machines were not the monsters of Kewbridge or Kempton pumping stations.  They were mostly from the industrial age of the midlands 1840-1930, powering textile mills, sawmills, and factories.  Some were quite big.  All were beautifully restored and presented, and for once, the descriptive labels had lots of information about the physical characteristics and histories of the engines.  A nice aspect was the elevated walkway down the centre of the room, allowing a good view above the engines.

Some photos follow.  Not as many as the museum deserves, because I am nudging my  Wordpress limits.




The twin beam engine of 1840 is the oldest engine in the museum. It started life as a twin, but when higher pressure steam became available it was converted to a compound twin.  Note the non identical con rods.  That happened during the conversion to compound.  Partly seen is an excellent collection of engine lubricators.


This is a “non dead centre” engine.  It has 2 con rods, one for each piston, but only one crank.  Watch the video below and see if you can figure it out.  It ran 100 looms in a textile mill.




Two of the barring engines.  These were small steam engines which were used to rotate the flywheel of a much bigger engine, to its correct starting position.



For the first time ever, I saw rope drives in action.  Rope made of cotton was preferred, but these days sisal is usually used.  Each rope could transmit 54hp if made of cotton, 30hp if sisal.  They worked in V shaped grooves, and hung rather loosely between the pulleys, the weight of the rope wedging the rope into the groove.  The splices, joining the rope into an endless loop were made by specialists, on the engine, and unlike marine splices, barely increased the diameter of the rope.  The splices which I saw extended over about 2 meters of the rope. 

This museum is another gem.  I have described only a few of the 24 major items on display.  There are many more, including engine lubricators, gauges, and valves.  It was well worth the stay in Manchester, and more than made up for my disappointment at the  Museum of Science and Industry.  Try to see it on a steaming day.  The dates are published on the website

Also, the 36 page “Souvenir Museum Guide” is the best guide of its type I have encountered and contains detailed descriptions and colour photographs of the major exhibits.  It is a steal for £2.  The History of the Bolton Steam Museum is 64 pages, crammed with photos, and after a quick browse I am looking forward to reading it.  Also IMO, a steal at £3.

Sincere thanks to the volunteers who shared their enthusiasm for steam engines with me today.  I do hope to return one day to see the engines running on steam.



Museums Have Changed. “Rocket”.

I visited the Manchester Museum of Science and Industry today.

As I entered I had to remove my hearing aids.  The noise was deafening.  It sounded like a rock concert with someone screaming into a microphone, as they do.

At the same time, I could see in front of me, Stephenson’s “Rocket”, and that was exciting.  Better still, there were only 1 or 2 people looking at it, so it was possible to get up close or more distantly, to examine it and take photos.

But there was a large crowd on the other side of the room, where the noise was originating.  I was informed that it was “a history of industry in Manchester” lecture, with sound effects and a live performance directed at kids.   Fair enough I suppose.  That sort of presentation might introduce kids to science and museums.  But I am skeptical.  More likely it is an introduction to entertainment, and not much to do with science or industry.

So, I made the most of it and spent quite a while examining Rocket and taking photographs from every angle.  Photos later.

Then I changed buildings to see the Power Hall exhibition of industrial steam engines.  This was the second major reason for my visit to Manchester.   But the Power Hall was closed!  “Temporary” said the sign.  “For one year” said the attendant.  Bummer.

Had a look in the “Air and Space Hall” and was impressed by the size of the twin rotor helicopter, and some other interesting old string and rag airplanes, but that is not really my thing.

Anyway, back to “Rocket”, which you know was the winner of the 1829 Rainhill trial, to pick a locomotive design which would be used to power a railway line between Manchester and Liverpool.  I had seen a replica of Rocket at York.  But this is the real one.   It is almost 200 years old, and it looks the part.  The timber bumper slab has partially disintegrated, and it is likely that some parts have been upgraded.  But those changes are now part of history.

Rocket side.JPG

The firebox water jacket is missing, causing the incomplete appearance.  Wooden front wheel, with iron rim.  Cylinder is horizontal so this is mark 2 or later.

Rocket firedoor.JPG

Rocket firedoor

Rocket firebox top.JPG

Firebox without copper water jacket, from the top

Rocket side2.JPG

The only other steam engine on display, (because the Power Hall was closed), was this very elegant beam engine.

Beam engine unlabelled

The flywheel must be 8′ diameter, which makes it a tall, thin machine.  I do like the fluted columns, and symmetrical entabulature.

Beam engine cylinder end

Now, that would make for an interesting model.



Model Engines on Steam

It is Geelong Show time again.  It is actually titled the Royal Geelong Show, but having had more than a gutful of royal non-entities visitors being adored by unthinking cringers, flocking around Harry and Meaghan Kardashian, Windsor, and being a committed republican, I refuse to bother with the “Royal” handle.  (they are probably very nice people, I just cannot stomach the hoo-ha).

More importantly, it gives us steam junkies a chance to run our small engines on real hot steam.

For a treat, I am sharing four short clips taken today.

The first is a small beam engine, made by Swen Pettig.

This video doesn’t exist

The next two engines you have probably seen before.  My beam engine, and the triple expansion engine.

The small engine to the right is a Stirling engine which is running on the heat from the exhausted steam from the beam engine.

The triple is leaking a bit more than it should, although it is running amazingly smoothly on 25-30 psi.  The valve glands need repacking.

And finally, a model IC engine, the really odd Atkinson.  A 100+ year old design.  2 stroke. Made by Rudi vanderElst



The following short videos show some of the engines on display by GSMEE in the Vintage Machinery Shed at the recent Geelong Show.  GSMEE is Geelong Society of Model and Experimental Engineers.  All engines are running on steam, except of course the Stirling engine,  the Farmboy, and the Atkinson engine.

These engines will be running again at the GSMEE exhibition 25-26 Nov 2017, at The Lifestyle Pavillion, The Geelong Showgrounds.  Several scale model traction engines, trade exhibits, outside entries, and the engines in the Vintage Machinery Shed will also be on show.  The Hatherly Challenge competition will be judged.  This year the challenge is to make a reversing horizontal mill engine.  Entry is free (gold coin donation accepted with gratitude).

Stirling Engine, running on heat from exhausted steam,  spinning a CD with spiral image, made by John V.



Stuart Victoria Twin, made by Malcom W



Bolton12 Beam Engine made by John V



Farmboy internal combustion engine, running on propane, made by Stuart T


This video doesn’t exist


Horizontal Mill Engine running on steam, reconditioned by John V,  (GSMEE exhibit)



Atkinson Engine, running on petrol, made by Rudi V.  FIRST PRIZE.


This video doesn’t exist


Stuart 5, running on steam.  Reconditioned by Rudi V.  GSMEE exhibit.


This video doesn’t exist


Beam Engine “Mary”, completed by Stuart T.  THIRD PRIZE.



Mill Engine, running on steam GSMEE exhibit.


This video doesn’t exist


Mill Engine running on steam.  GSMEE exhibit.


This video doesn’t exist


Mill Engine, running on steam, made by Malcolm W.


This video doesn’t exist


Triple expansion marine steam engine by John V.  Almost completed.  SECOND PRIZE.


Boxford CNC lathe (5)

The following pictures and video were supplied to me by Stuart Tankard.

They show the rarely used tailstock in use, supporting a relatively long thin workpiece.

The lathe is Stuart’s, and his control panel is fixed to the lathe cabinet.  (Mine is an identical machine except that I use a  wireless MPG).

The tailstock is the part coloured bright yellow, and it normally sits unused in a drawer, or hinged down and out of the way.  As you can see however, it occasionally is useful.


Stuart’s lathe.  Note that the G code for the part was generated by a program called EZILATHE.   I also use this very handy program.  Ezilathe is a free download.



The part is the first step in making a link for the beam engine which Stuart is completing.  The headstock end is held in an ER collet.  The tailstock contains a small roller bearing held in a shop made fitting.  After turning, the tear drop ends will have flats milled onto the sides, then holes drilled and reamed for shafts.

Check out the following Youtube video to see Stuarts lathe in action.

Milling a taper in thin steel

I was reading an article published by The Home Shop Machinist today, and I was very surprised to see my name as the author.

I had submitted it to HSM several  years ago, and had totally forgotten about it.

I had to read the article to remind myself how I achieved this neat little trick, of machining an exact 1.5 degree taper in a very thin workpiece.

Click on the link below to see the short article.


Milling a Taper in Thin Steel

Prize Winning Hit and Miss Engine

This Hit and miss engine by Stuart won first prize at the Royal Geelong Show Model Engineering section.

Second prize to yours truly.

Model Bolton Beam Engine.

Model Bolton Beam Engine.

Beam Engine, First Run on Live Steam

My Bolton 12 Beam engine is being exhibited at The Geelong Show in the next few days, along with other model engines from The Geelong Society of Experimental and Model Engineers (GSMEE), and many other full size antique engines.

I am particularly excited by this event, because it is an opportunity to run my beam engine for the first time on live steam.  Plus it is a really great event generally, (see blog from this time in 2014).

We set up our model engines today, in preparation.

The video below, is of my beam engine’s first run on steam.  The Vintage Machinery Society has a full size boiler to run a full size marine triple expansion marine engine, and many other steam engines, including the models in our “cage”.


The Cage in the Vintage Machinery Shed.  Not sure whether it is to keep the hordes out or the old blokes in.  (Actually, the machines become very hot when running on steam, so the cage is to keep small hands out).

The steam is at 25-30psi.  Enough to turn over the engines, which are just ticking over, not under working loads.

Click on the arrow in the video box, to see the video.

Making Small Gaskets

My Bolton 12 Beam Engine is a steam engine, but to date, has run only on compressed air.

Compressed air, is invisible. Any leaks, might make some noise, and show up as a dirty oil leak, but are not visible to a casual observer.

In contrast, steam shows up every leak.

Our club is having its annual exhibition at The Geelong Show, in 2 weeks.  (See the post from 12 months ago about The Geelong Show)

Steam is available so I have decided to show my Bolton 12 beam engine, and to have it running on steam.

That has required making a steam connection and removing the compressed air connector, And more importantly, making every joint in the steam-air line,  steam proof.

So every join has been opened and a gasket inserted.  Some of the gaskets are oiled brown paper, and some are more permanent “liquid” gaskets.

Making the gaskets was a new and interesting experience, so I decided to make a photographic record.

I made the gaskets from brown paper.

I required 6 of these small gaskets, and 2 larger ones.


More components ready to have gaskets installed


Step 1. Make an impression of the surface in the paper using finger pressure.  Do not allow the paper to move.


Step 2.  Continuing to hold the paper securely, locate the bolt and steam holes using a pin.  


Step 3. Using an old centre drill, enlarge the pin holes. Rotate the centre drill anticlockwise to avoid tearing the paper. Push the the drill firmly while rotating it, and continue to hold the paper firmly against the surface.


Step 4. Use the fine scissors to remove the dags. A delicate touch is required.  Use the ordinary scissors to cut the outline.


It looks like it should do the job.


The reassembled beam engine.  The displacement oiler, and rope driving pulley have been added since the last photos were posted.

Amazingly,  after reassembly, I had no left over bits.  If it works on steam as planned, I will post a video.  Watch this space.

Beam Engine Driving Wheel 2

The aluminium disk was drilled then reamed to 19.05mm (3/4")

The aluminium disk was drilled then reamed to 19.05mm (3/4″)


Then a shaft was pressed into the disk. The shaft is the same as the shaft on the beam engine, in fact it is from the same stock. It was centre drilled at the ends in preparation for turning between centres, and shaping the driving wheel.   This should result in a wheel which runs true and does not wobble when installed onto the beam engine. 

Beam Engine Driving Wheel from a Big Lump of Aluminium

16kg aluminium rod.  Cutting off using a band saw.

16kg aluminium rod. Cutting off using a band saw.

I bought a 130mm diameter lump of aluminium rod, 460mm long, weighing 16kg, off ebay. It was described as excellent machining material, so I put it to the test. I need a driving wheel for the beam engine.

The driving wheel fits between the flywheel and the governor column.

The driving wheel fits between the flywheel and the governor column.

The aluminium disk straight off the band saw.  A perfect cut from a well adjusted saw.   Took about 5 minutes to make the cut, using plenty of cutting fluid and slow descent of the blade in order to avoid jamming.

The aluminium disk straight off the band saw. A perfect cut from a well adjusted saw. Took about 5 minutes to make the cut, using plenty of cutting fluid and slow descent of the blade in order to avoid jamming.

It turned beautifully.  Using a HSS tangential  tool.  You can see a mirror reflection even as the turning as happening.

It turned beautifully. Using a HSS tangential tool. You can see a mirror reflection even as the turning as happening.


Laurie Braybrook

A well known exhibitor and his eclectic display of steam valves.  A small part of the Model Engineering display is visible at back.

The annual “Royal Geelong Show” was held last weekend.  It has been held for the past 159 years.  Farmers exhibit their best cattle, pigs, sheep, alpacas etc and produce, there are various equestrian events, tractor pulls, Lanz bulldog races, dog breed competitions, and all of the side shows, show bags, and amusement park rides which accompany most agricultural-regional shows.

At the show grounds, Geelong is fortunate to have a well established antique engine display, featuring many steam powered stationary engines, traction engines, steam trucks, tractors, etc etc., many which live there permanently, such as a ships triple expansion steam engine, and many which are brought in just for the show.

There is also a model engineering display, of dozens of working,  steam powered small engines.  It is always a source of fascination to the many visitors.

A competition is held for recently constructed models, and I was very lucky and thrilled to receive the first prize for the Bolton 12 beam engine.  Second prize was for a rebuilt antique pressure gauge, and third for a Stuart twin cylinder “Victoria” stationary engine.



To see the beam engine working, look at the older posts, at the bottom of this page


The rebuilt antique pressure gauge by Stuart .


Beam Engine Ready for Painting

I uncovered the beam engine last weekend, and thought about painting some of the machined parts. I quite like the look of the machined metal and the rough cast surfaces, but some bits really look as if they should have some colour.

The engine itself is almost fully machined.  Just needs things like gaskets, pump hookups, some bolt lengths trimmed.

The copper exhaust pipe will eventually hook up to a steam condensing unit which is yet to be built.  The condensing unit will be housed underneath.



I am planning to polish the aluminium base to a mirror finish, and paint the dark cast iron surfaces in a dark green gloss paint. Some items I will electroplate with nickel.

I have no 3 phase power in my workshop at present, due to a failed component in the phase-changer, but it has been repaired and will be reinstalled in a day or so. Then back to the machining. The painting can wait.

Beam Engine Column after turning, before plating


I still have not got the hang of this blogging stuff.
I tried to post 3 photos together, but wordpress accepted only the last photo posted.
So here is the first one in the series.
This is the casting of the beam engine column.
As you can see, it is roughly the shape desired. It was quite heavy, and had a very tough external skin which required carbide tooling to break through.


3 photos of the beam engine column
1. The casting, roughly the shape, with a very tough external layer
2 After turning, nicely shaped and shiny, but quickly develops surface rust
3. After nickel plating, not perfect, but not bad for a beginner. The nickel only plated those surfaces which had been machined. A few deep pits on the surface did not accept the nickel plating. I had conflicting advice about the adviseabilty of plating cast iron, but overall, I am quite pleased with end result. I might have overdone the electroplating brightener additive. One colleague called it engine “bling”.

Beam Engine Steam Pipes, variation number 3

The inlet steam pipe was moving a little, being pulled by the governor lever, so I made a new inlet pipe, running it along the base, and silver soldered a bracket to the base to support it. It is more rigid, and I think that it looks better too. The Nitto air line fitting in the foreground, is a custom made fitting, to join the 0.25″ steam pipe to the air compressor line. It was made on the Boxford CNC lathe.


Using the Boxford 125 TCL, and Mach 3
I will do a feature about this CNC lathe in a later post.
Some people consider that using CNC in model making is a form of cheating.
I will happily continue cheating.
It is a demanding and fascinating mode of metalworking, great for repetition work, tapers, curves and complex shapes.

Making the Bolton Beam Engine

A sequence of photos and videos about some of the aspects of the build.
Actually, this is more of an experiment in the process of making a show using photos videos and music.
The music is by Lis Viggers.

Beam engine operating

The Bolton 12 beam engine has now had some “running in” time, and I have made some tuning adjustments to the valve timing.
Is it now running more smoothly on low pressure compressed air. For the video the compressor is turned off, and the engine RPM falls off as the tank pressure goes down.
I do not have a boiler big enough to run this engine on steam, and I am negotiating with a friend to borrow his boiler so I can make a video of the engine running on steam. (Stuart, are you reading this?)


After the piston detachment episode, I did not hurry back to the beam engine project.  I talked to some steam expert colleagues about my valve timing problem.  They suggested that my plans were drawn in “first projection” and that maybe I had interpreted them as “third projection”.  I think that means that I had assumed I was looking down from above, whereas some older plans are drawn as if looking up from below (or something like that).

If so, it might have meant that the piston and valve movements were way out of sync.

So, I removed the crankshaft and its key, and replaced the key with a grubscrew.  That allowed me to experiment with different positions of the crank on the mainshaft.  Eventually I obtained some purposeful movements, and I got so excited that I immediately made a video.  The video that follows is that video.  Way premature and I should not show this first very awkward effort, but here it is, warts and all.  Fortunately I ran out of compressed air before it became really embarassing.   When I do some fine tuning of the valve timing, and fix all of the leaks, and attach the governor connector shaft so the governor works, I will make a more professional video.  With a video camera on a tripod.


To see the video of the beam engine running, click on the Youtube link on the previous blog entry.

In order to make the video without the compressor noise, I turned off the compressor and ran the beam engine off the tank full of air.  It did not take long to run out of air pressure, as you will see in the video.

Also, engine is still rather tight, but I expect that the motion will become smoother as the engine is “run in”.

The governor is yet to be linked to the throttle valve, so the engine speed varies substantially.

Watch this space for the beam engine to be run on live steam.


Steam Chest Uncovered

I removed the steam chest cover in order to attach the steam supply pipe.
The photo shows the sliding valve (gunmetal) and the valve rod which is moved by the silver coloured rods at the sides.
One of the steam ports is visible underneath the sliding valve.
The photo also shows the 6 steam chest studs which hold the whole thing together.

Beam Engine steam pipes made and installed

Steam Cock and valve. Making the handle.



The steam control cock and butterfly valve.

The steam control cock and butterfly valve.

The brass and redgum blank joined with M3 threaded rod

The brass and redgum blank joined with M3 threaded rod

The brass-wood handle after turning

The brass-wood handle after turning

Milling the squared section

Milling the squared section

Drilling the square hole

Drilling the square hole

Filing the square hole corners.  (you didn't really believe that iI would drill a square hole did you?)

Filing the square hole corners. (you didn’t really believe that I would drill a square hole did you?)

Finished handle
Finished handle

Almost Finished Beam Engine

Beam Engine castings

shipment 1 of 3

The castings and plans were supplied by E&J Winter, Sydney, which is now owned and managed by Kelly Mayberry. He has a well established web site with catalogue, prices etc, and he is very interested and helpful with queries during the machining of the castings.
I believe that the castings come from various small foundries around Sydney.
The plans for the 2 engines which I have made so far were drawn up many decades ago, and are rather frustratingly in imperial measurements. So the first task when I receive a new set of plans is to convert all of the measurements into metric units. Then I have the plans laminated, because they get a lot of handling in the dirty greasy conditions of the workshop. Another item on the plans agenda is to make photocopies of the intricate details on the plans, and magnify them x2. I find this is a great help for my rather dodgy eyes.

Beam Engine Governor Gears

The bevel gears on the plans looked rather difficult to make. Finished gears were available from the castings supplier, but on ordering, no, they had not had them in stock for a long time, and even if they were available the cost would be $a254.
So, I tried another option which was successful.
I ordered some angle grinder gears from China, cost $5 per pair, machined new centre holes for brass inserts which fitted the shafts, used Loctite to glue the inserts, and broached the keyways into the brass inserts.

The photo shows the larger gear unmachined at top, and bored ready  for the brass insert at bottom.
The gears were too hard to machine initially, so I put them through a couple of cycles of heat to red hot and slowly cooling, and then my carbide cutters worked…. just. I did not want to risk my expensive broaches however, and that was one reason for the brass inserts. The other reason was to remove some of the angle grinder features from my antique looking model.
The angle grinder bevel gears have curved teeth, which would not have appeared in 1880, but you can’t have everything. It does make them very silent.

Beam Engine Parallel Motion

A close up shot of the parallel motion apparatus which I made for the beam engine. Designed and patented by the famous James Watt in the 18th century. A complex apparatus which is fascinating to watch in action. Its function is to keep the piston rod precisely centrally in line with the cylinder, despite the circular motion of the beam end.


I am currently making this engine. It has actually progressed beyond this photo, and is now complete except for the steam connection, installation of control valve, and painting. It is a Bolton No 12. Based on an engine and pump from near Maitland NSW. The original was rated at 16hp. This small version has a […]