johnsmachines

machines which I have made, am making, or intend to make, and some other stuff. If you find this site interesting, please leave a comment. I read every comment and respond to most. n.b. There is a list of my first 800 posts in my post of 17 June 2021, titled "800 Posts"

Tag: Wooden compressor

Wooden Compressor-3

To remind us what is being 1:10 scale modelled.

Today I CNC milled the cams. And silver soldered them to the bearings.

The same process as making the bearings in the previous post. But much smaller.
Silver soldered. Hebel base and brass block at rear to stop the parts blowing away.
Magnified +++.
The handle was cnc’d, but I made a mistake with the dimensions, so made another one. That is easily done with CNC. The tabs are cut with side cutters.
Pins are fixed in the 4 holes around the pivot, and a “rope” 2mm diameter in the end hole. I will turn the handle over to hide the distal ding. The marks are the limits of handle travel, limited by the carriage transoms.

PS. A few days later. In a fit of perfectionistic idiocy I removed the bronze cams, and replaced them with steel ones. The originals were iron. The pins which pushed on the cams were also steel. That took about 3 hours, but now I can sleep easy.

And by the way, the compressor was working perfectly when finished. But a few days later, with a change in the weather, it is not applying enough pressure to the slides. That is the problem with articles made from wood….. they expand in humid weather, and shrink in dry weather. Dimensions changes of 3% are common, across the grain. It was probably one reason the wooden compressors were abandoned in favour of Elsworth iron compressors, and hydraulic mechanisms.

Wooden Compressor -2, and Smith’s Screw.

Making scale model components probably takes as much time as making full size ones. Well, with some exceptions. In each part of the compressor for example, there are as many measuring, set-up and machining actions in the model as in the full size part. Finding dropped tiny parts would take as much time as the (considerable) manhandling of the heavy full size ones IMO.

Yesterday for example, I spent about 3 hours deciding how to attach the compressor support pieces, cutting, machining, drilling and tapping the holes, then fitting them.

I use brass or bronze or stainless steel wherever possible. Not always the same as the original, but I don’t want my miniature to end up in the same condition as the originals in another 150 years. The brass tabs were placed as close as possible to the corners, but avoiding the long bolts holding the leaves together.
The underside of the compressor. 10BA bolts. Wood gets grubby in the workshop. It will require a good solvent cleanup before finishing.
To demonstrate the compressor location. It sits on the metal slides, and between the cheeks and cross pieces (transoms) of the carriage.
The Smith’s Elevating Screw is finally complete. Here showing the pins which engage with the gear to turn the screw. The handle spins freely on the screw shaft. The hemispherical top sits in a corresponding hole in the bed plate. I am satisfied with this interpretation of the limited information available about the Smith’s Screw.

Wooden Compressor

Another boring cannon post.

A very pleasant drive to Warrnambool yesterday, and re-inspection of the very rare compressor which was the recoil arrestor for the LowMoor 68pr cannon. And probably for all guns on the same carriage and platform, including the Armstrong 80pr RML’s at Elsternwick, Queenscliff, etc which I am currently modelling.

This is the 1861 compressor. 2 elm wood pieces, plus a repair on the right, all splits, cracks, rot and rust, and rather fragile. 4″ thick. Possibly the only one of its type still in existence. The central bronze elliptical bearing shell halves are in good condition. The iron pieces riveted to the bearing shells are rusted, but fairly intact. The rectangular pieces in the corners rest on the inclined platform slides. The central iron presumed elliptical post and its handle are missing.

I wanted to closely examine the iron riveted pieces closely to check my theory that the short straight sections are the parts which acted as the cams to close the gap between wooden leaves and release the friction from the braking action. Unfortunately the rust concealed any such evidence. But I still believe that was the purpose of these iron pieces.

So, today, I commenced making a 1:10 scale model of the compressor to fit to my miniature cannon.

The bronze bearings and attached iron cams protrude above the surface of the wooden leaves.

At 1:10 scale the bronze bearings would be less than 1mm thick. How to make them?

I CNC milled them from some gunmetal hex bar, then parted them from the bar in the lathe. I had previously made the wood leaves, and CNC’d the elliptical hole to fit the bearings. I don’t have any elliptical drill bits.
… and they fitted nicely. The original bearings were screwed to the wood leaves. I intend to use Loctite. The originals were made of elm. I used a close grained Victorian Mountain Ash.

I milled the steel elliptical post from silver steel. Yes, CNC’d.

Steel post, threaded to eventually fasten the handle with pins to move the cam pieces. Handle not yet made.
The pieces all fit well. The screw is temporary.

Another workshop session require to make the iron cams and the handle with pins.